Canonical Artin Stacks over Log Smooth Schemes
نویسنده
چکیده
We develop a theory of toric Artin stacks extending the theories of toric Deligne-Mumford stacks developed by Borisov-Chen-Smith, Fantechi-Mann-Nironi, and Iwanari. We also generalize the Chevalley-Shephard-Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding X is canonically the good moduli space (in the sense of Alper) of a smooth log smooth Artin stack whose stacky structure is supported on the singular locus of X.
منابع مشابه
The Cotangent Stack
1.2. We refer to [LMB] for the basic background on stacks. Let us quickly recall: a stack over a scheme S is a sheaf of groupoids on the faithfully flat topology of S-schemes, where the presheaf requirement that the composition of the restriction maps is the restriction map of the composition is understood in the weak sense. Stacks form a 2-category with fiber products and there is a clear embe...
متن کاملModuli of Twisted Sheaves
We study moduli of semistable twisted sheaves on smooth proper morphisms of algebraic spaces. In the case of a relative curve or surface, we prove results on the structure of these spaces. For curves, they are essentially isomorphic to spaces of semistable vector bundles. In the case of surfaces, we show (under a mild hypothesis on the twisting class) that the spaces are asympotically geometric...
متن کاملCompactified Picard Stacks over the Moduli Stack of Stable Curves with Marked Points
In this paper we give a construction of algebraic (Artin) stacks Pd,g,n endowed with a modular map onto the moduli stack of pointed stable curves Mg,n, for g ≥ 3. The stacks Pd,g,n are smooth, irreducible and have dimension 4g − 3+n. They yield a geometrically meaningful compactification of the degree d universal Picard stack over Mg,n, parametrizing n-pointed smooth curves together with a degr...
متن کاملTangent Lie algebra of derived Artin stacks
Since the work of Mikhail Kapranov in [Kap], it is known that the shifted tangent complex TX r ́1s of a smooth algebraic variety X is endowed with a weak Lie structure. Moreover any complex of quasi-coherent sheaves on X is endowed with a weak Lie action of this tangent Lie algebra. We will generalize this result to (finite enough) derived Artin stacks, without any smoothness assumption. This in...
متن کاملDe Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities
We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic p (as defined by Abramovich, Olsson, and Vistoli) which lift mod p degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme. Given ...
متن کامل